Search ICLR 2019

Searching papers submitted to ICLR 2019 can be painful. You might want to know which paper uses technique X, dataset D, or cites author ME. Unfortunately, search is limited to titles, abstracts, and keywords, missing the actual contents of the paper. This Frankensteinian search has returned from 2018 to help scour the papers of ICLR by ripping out their souls using pdftotext.

Good luck! Warranty's not included :)


Need random search inspiration..? Grab something from the list of all tags! ^_^
How about: nlp, gcnn, learned representation, unsupervised-parsing, clevr ..?


Sanity Disclaimer: As you stare at the continuous stream of ICLR and arXiv papers, don't lose confidence or feel overwhelmed. This isn't a competition, it's a search for knowledge. You and your work are valuable and help carve out the path for progress in our field :)

"liapunov's method" has 1 results


Nesterov's method is the discretization of a differential equation with Hessian damping    

tl;dr We derive Nesterov's method arises as a straightforward discretization of an ODE different from the one in Su-Boyd-Candes and prove acceleration the stochastic case

Su-Boyd-Candes (2014) made a connection between Nesterov's method and an ordinary differential equation (ODE). We show if a Hessian damping term is added to the ODE from Su-Boyd-Candes (2014), then Nesterov's method arises as a straightforward discretization of the modified ODE. Analogously, in the strongly convex case, a Hessian damping term is added to Polyak's ODE, which is then discretized to yield Nesterov's method for strongly convex functions. Despite the Hessian term, both second order ODEs can be represented as first order systems. Established Liapunov analysis is used to recover the accelerated rates of convergence in both continuous and discrete time. Moreover, the Liapunov analysis can be extended to the case of stochastic gradients which allows the full gradient case to be considered as a special case of the stochastic case. The result is a unified approach to convex acceleration in both continuous and discrete time and in both the stochastic and full gradient cases.